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Abstract
The logic of tied implications deals with implications ⇒: P × L → L (on two lattices

(P,≤P , 1P ) and (L,≤L)), tied by an integral commutative ordered monoid operation ⊗ on
P , in the sense of the following identity: ((x⊗ y)⇒ c) = (x⇒ (y ⇒ c)) .We demonstrate
the usefulness of tied implications through some applications. We use the connectives of
a tied algebra to interpret Generalized Modus Ponens (GMP) inference schemata, in the
vein of both the Compositional Rule of Inference (CRI) of Zadeh, and the Consequent
Dilation Rule (CDR), due to Magrez and Smets and developed by Morsi and Fahmy. We
show that a multiple-rule, generalized modus ponens inference scheme is equivalent, as
far as CRI or CDR are concerned, to a scheme that satisfies the "basic requirement for
fuzzy reasoning", proposed by Fukami, Lehmke, Perfilieva, Tian and Turksen. We end
by investigating the principles of fuzzy control in general with interpretations based on a
particular case of CRI, called Generalized Conjunctive Rule (GCR), due to Hájek. We
show that the basic requirement for fuzzy reasoning is satisfied by GCR in all single
rule inference schemata, using the connectives of a tied algebra, and we indicate a special
type of multiple-rule schemata in which this requirement is satisfied.

Keywords
Fuzzy logic; Generalized modus ponens; Fuzzy control; Nonclassical logics; Tied impli-

cation; Prelinearity

1. Introduction

By an implication on two lattices P and L, we mean a function ⇒: P × L → L with
mixed monotonicity properties, and with the top element 1P of P as a left identity element.
This⇒ is said to be tied if there is an integral commutative ordered monoid operation ⊗
on (P, 1P ), called here an object-conjunction (also called the tying-conjunction), such that
the following identity holds: ((x⊗ y)⇒ c) = (x⇒ (y ⇒ c)). This property extends to
multiple-valued logic the equivalence, in classical logic, of the following two statements:
"If (X and Y ) then C", and "If X then (if Y then C)". It holds for several types
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of implications used in fuzzy logic. Our study of tied implications is founded in the
well-established domain of residuated lattices, whereby implications and conjunctions are
related by residuation (= adjointness).
Section 2.1 offers needed background on the notion of adjointness. We follow Morsi

[13] in the simultaneous use of two lattices in one adjointness algebra. However, in the
special case of a residuated algebra (Section 2.2), only one lattice can be used, because
the conjunction there has a two-sided identity element.
In Section 2.3, we quote the Morsi - Abdel-Hamid definition of tied algebras [1,13]. We

request tying-conjunctions to be commutative integral ordered monoid operations. We
require them to be supremum-preserving, in order to have residuated implications. Those
structures admit an abundance of useful inequalities [15], which we compile in Theorem 3.
Yet they encompass a wide variety of examples [15], among which the residuated algebras
are one type. In Section 2.4 we quote from [15,16] the definition and principal properties
of prelinear tied algebras (over pairs of lattices), defined in analogy with the prelinear
structures of Esteva, Godo, Hájek and Höhle.
We demonstrate the usefulness of tied implications through some applications. In Sec-

tion 3, we use the connectives of a tied adjointness algebra to interpret Generalized Modus
Ponens (GMP) inference schemata, in the vein of both the Compositional Rule of Infer-
ence (CRI) of Zadeh (Section 3.2), and the Consequent Dilation Rule (CDR), originally
due to Magrez and Smets [10], and developed by Morsi and Fahmy [14] (Section 3.3). We
show that a multiple-rule, generalized modus ponens inference scheme is equivalent, as
far as CRI or CDR are concerned, to a system that satisfies the "basic requirement for
fuzzy reasoning", proposed by Fukami et al. [7], Turksen and Tian [21], and Perfilieva and
Lehmke [19,20]. In Section 4, we look into some general principles of fuzzy control with
interpretations based on a particular case of the CRI, called Generalized Conjunctive
Rule (GCR for short), due to Hájek [8]. We show that the "basic requirement for fuzzy
reasoning" is satisfied by GCR in all single rule inference schemes, when the connectives
of a tied algebra are properly employed. But, it is satisfied in a special type of multiple-
rule inference schemes only. We indicate clearly where prelinearity is needed in some (but
not all) of our proofs.
Our conclusions are given summarily in Section 5.

2. Basics

2.1. Implications and their adjoints
Throughout this article, (P,≤P ) and (L,≤L) denote two independently chosen complete

lattices, usually denoted simply by P and L, respectively. The top element of the lattice
(P,≤P ) is denoted by 1P . An implication3 (Morsi [13])⇒ on P,L is a function : P×L→ L

that satisfies the following five conditions:
I1: ⇒ is antitone in the left argument.
I2: ⇒ is isotone in the right argument.
I3: ⇒ has 1P as a left identity element.

3This two-lattices approach to logical connectives, was started algebraicly by Morsi in [13]. It was then
adopteded by Morsi, Lotfallah and El-Zekey [15], and by Morsi and Roshdy [17]. Then it was formulated
syntactically, within the first order logic of tied implications, by Morsi, Lotfallah and El-Zekey in [16].
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I4: ⇒ has an adjoint ⊃ in the left argument; that is, ⊃: L×L→ P is a function that
satisfies the following equivalences for all x ∈ P, b, c ∈ L :

Adjointness 1 : x ≤P b ⊃ c if and only if b ≤L x⇒ c. (1)

I5: ⇒ has an adjoint & in the right argument; that is, & : P × L → L is a function
that satisfies the following equivalences for all x ∈ P, b, c ∈ L :

Adjointness 2 : x&b ≤L c if and only if b ≤L x⇒ c. (2)

The presence of those adjoints ⊃ and & helps to generate universal inequalities in the
ensuing calculus, and so facilitates the solution therein of inequalities that may arise
during various applications.
The two adjoints ⊃ and & of ⇒ exist if and only if the implication ⇒ satisfies:

(
sup
j

xj ⇒ inf
m
cm

)
= inf

j,m
(xj ⇒ cm) , (3)

for all indexed families {xj} in P , and {cm} in L. They are then uniquely given by

b ⊃ c = sup {x ∈ P : b ≤L x⇒ c} , b, c ∈ L. (4)

x&b = inf {c ∈ L : b ≤L x⇒ c} , x ∈ P, b ∈ L. (5)

Thus, we can rephrase the definition of an implication ⇒: P × L → L as a function
which satisfies (3), and has 1P as a left identity element.
The function ⊃: L × L → P is called a comparator. A comparator satisfies a condi-

tion analogous to (3), and determines the partial order on L in manner of the following
comparator property:

b ≤L c if and only if b ⊃ c = 1P , ∀b, c ∈ L; (6)

which confers on comparators their nomenclature.
We call the function & : P ×L→ L a metalogical conjunction. This is due to its role in

an interpretation of generalized modus ponens (Section 3.2), whereby it conjoins premises
(for instance, an observation with a rule), as a step toward producing conclusions, see
also [12,15]. A metalogical conjunction has 1P as a left identity element and preserves, in
each argument, all suprema that may exist in P or L, that is

(
sup
j

xj&sup
m

cm

)
= sup

j,m

(xj&cm) , (7)

for all indexed families {xj} in P , and {cm} in L.
It is directly seen that each comparator ⊃, or each metalogical conjunction &, is the

adjoint of a unique implication ⇒, obtained through either one of the following two
equations: For all x ∈ P, c ∈ L :

x⇒ c = sup {b ∈ L : x ≤P b ⊃ c} , (8)

x⇒ c = sup {b ∈ L : x&b ≤L c} . (9)
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When adjointness is applied to the following three trivial identities x ⇒ c = x ⇒ c,
x&b = x&b (in L) and b ⊃ c = b ⊃ c (in P ), we obtain, for all x ∈ P and all b, c ∈ L,
the following six basic inequalities in P and L:

x ≤P (x⇒ c) ⊃ c, (10)

x&(x⇒ c) ≤L c, (11)

b ≤L x⇒ (x&b) , (12)

x ≤P b ⊃ (x&b) , (13)

b ≤L (b ⊃ c)⇒ c, (14)

(b ⊃ c)&b ≤L c. (15)

Definition 1 The mathematical system Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃), described above,
is called an adjointness algebra. The class of all adjointness algebras is denoted by
|ADJA|.

We need the following universal inequalities in adjointness algebras:

inf
j
(bj ⊃ cj) ≤P (inf

j
bj ⊃ inf

j
cj) (16)

inf
j
(bj ⊃ cj) ≤P (sup

j

bj ⊃ sup
j

cj) (17)

for all indexed families {bj} and {cj} in P , such that the suprema and infima in the
right-hand sides exist.
An implication ⇒ is said to be faithful4 if it satisfies:

(∀x, y ∈ P ) (if x �= y, then (∃c ∈ L) : x⇒ c �= y ⇒ c) . (18)

It is said to satisfy the exchange axiom if it satisfies:

(∀x, y ∈ P ) (∀c ∈ L) (x⇒ (y ⇒ c) = y ⇒ (x⇒ c)) . (19)

2.2. Residuated implications
We say that⇒,⊃,& are connectives on P whenever (L,≤L) = (P,≤P ). If, in this case,

& is commutative and associative, we call it an object-level-conjunction, or shortly, an
object-conjunction. This is drawn from its role in generalized modus ponens, whereby it
conjoins subformulae within one premise, see [15, Section 4]. Whenever & is commutative,
⇒ has to coincide with ⊃; becoming simultaneously an implication and a comparator.
We usually denote an object-conjunction by ⊗. We denote its adjoint ⇒=⊃ by →. A
vast literature is devoted to the mathematical system (P,≤, 1,⊗,→), called a residuated
algebra, whereby → is called the R-implication, residuum, or residuated implication, of
⊗5. The class of all residuated algebras is denoted by |RA|.
The algebraic properties of residuated algebras (P,≤, 1,⊗,→) are now well known. In

particular, we shall have recourse to:

Strong residuation : (x→ (y → z)) = (y → (x→ z)) = (x⊗ y → z) ,

Residuation : x⊗ y ≤P z iff y ≤P x→ z iff x ≤P y → z.

4It is said to distinguish left arguments in [1,15,17]
5Object-conjunctions on the unit interval [0, 1] of real numbers are all the supremum-preserving triangular
norms (t-norms).
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2.3. Tied implications
A binary operation ⋆ (on P ) ties an implication ⇒ (on P, L) if the following identity

holds:

(∀x, y ∈ P ) (∀c ∈ L) (((x ⋆ y)⇒ c) = (x⇒ (y ⇒ c))) , (20)

and we say that ⇒ is tied [1]. Every tied implication ⇒ on P, L has a greatest binary
operation ⊗⇒ on P that ties it, and ⊗⇒ is associative and isotone in each argument. It
becomes commutative if and only if ⇒ satisfies the exchange axiom [1]. If ⇒ is tied and
faithful, then it is tied uniquely by ⊗⇒. In this case, ⊗⇒ preserves arbitrary suprema,
and 1P becomes a two-sided identity element for ⊗⇒; that is, ⊗⇒ becomes a (possibly
noncommutative) object-conjunction [1]. For this reason, as well as other reasons ex-
pounded in [15, Remark 3.1], we shall henceforth reserve the term tied implication only
for implications tied by (commutative) object-conjunctions.

Definition 2 The ensuing mathematical system Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃,⊗,→) is
called a tied adjointness algebra [13,15], or shortly, a tied algebra. The class of all tied
algebras is denoted by |TA|. A tied chain (a linear tied algebra) is one in which both
lattices are chains.

It is well known that ⊗ ties its residuum →. Hence, every residuated algebra (P,≤P
, 1P ,⊗,→) is automatically a tied algebra of the type (P,≤P , 1P , P,≤P ,→,⊗,→,⊗,→).
Tied algebras provide a particularly rich framework, through which all useful properties

of residuated algebras can extend over a much wider scope of logical connectives already
in use in fuzzy logic, see the examples of tied algebras in [15]. In the meantime, we manage
to retain all their desirable traits, but with the roles of ⊗ and→ being distributed among
the five connectives of a tied algebra. This is attested by the thirty schemata of formulae,
in the next theorem, which ensue from the tiedness of ⇒.

Theorem 3 [15] The following identities and inequalities hold in a tied algebra (P,≤P
, 1P , L,≤L,⇒,&,⊃,⊗,→): ∀x, y, z ∈ P , ∀a, b, c, d ∈ L:

⊗ ties ⇒: ((x⊗ y)⇒ c) = (x⇒ (y ⇒ c)) , (21)

⊗ ties & : ((x⊗ y)&c) = (x&(y&c)) , (22)

Strong adjointness : (b ⊃ (x⇒ c)) = (x→ (b ⊃ c)) = (x&b ⊃ c) , (23)

Exchange axiom for ⇒: (x⇒ (y ⇒ c)) = (y ⇒ (x⇒ c)) , (24)

Exchange axiom for & : (x&(y&c)) = (y&(x&c)) , (25)

((x→ y)⊗ (c ⊃ d)) ≤P ((y ⇒ c) ⊃ (x⇒ d)) , (26)

((x→ y)⊗ (c ⊃ d)) ≤P ((x&c) ⊃ (y&d)) , (27)

((a ⊃ b)⊗ (c ⊃ d)) ≤P ((b ⊃ c)→ (a ⊃ d)) , (28)

⊃ is ⊗−transitive : ((a ⊃ b)⊗ (b ⊃ d)) ≤P (a ⊃ d) , (29)

Prefixing with ⇒: b ⊃ c ≤P ((x⇒ b) ⊃ (x⇒ c)) , (30)
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Prefixing with & : b ⊃ c ≤P ((x&b) ⊃ (x&c)) , (31)

Prefixing with ⊃: b ⊃ c ≤P ((a ⊃ b)→ (a ⊃ c)) , (32)

Suffixing with ⇒: x→ y ≤P ((y ⇒ c) ⊃ (x⇒ c)) , (33)

Suffixing with & : x→ y ≤P ((x&b) ⊃ (y&b)) , (34)

Suffixing with ⊃: b ⊃ c ≤P ((c ⊃ d)→ (b ⊃ d)) , (35)

Balance 1 : (((b ⊃ a)⇒ d) ⊃ ((c ⊃ a)⇒ d)) ≥P (b ⊃ c) , (36)

Balance 2 : (((a ⊃ b)&d) ⊃ ((a ⊃ c)&d)) ≥P (b ⊃ c) , (37)

Balance 3 : (((x⇒ (y ⇒ c)) ⊃ c)⇒ d) ≤L (x⇒ (y ⇒ d)) , (38)

Balance 4 : ((c ⊃ (x&(y&c)))&d) ≥L (x&(y&d)) , (39)

x&(y ⇒ c) ≤L (y ⇒ (x&c)) , (40)

(y → x)&c ≤L (y ⇒ (x&c)) , (41)

y&(x⇒ c) ≤L ((y → x)⇒ c) , (42)

(b ⊃ c)&d ≤L ((d ⊃ b)⇒ c) , (43)

x⊗ (b ⊃ c) ≤P ((x⇒ b) ⊃ c) , (44)

x⊗ (c ⊃ b) ≤P (c ⊃ (x&b)) , (45)

x⊗ y ≤P ((x⇒ (y ⇒ c)) ⊃ c) , (46)

x⊗ y ≤P (c ⊃ (x&(y&c))) , (47)

y ⇒ c ≤L ((x⊗ y)⇒ (x&c)) , (48)

y ⇒ c ≤L ((x→ y)⇒ (x⇒ c)) , (49)

x⇒ b ≤L ((b ⊃ c)⇒ (x⇒ c)) . (50)

2.4. Prelinear tied algebras
Definition 4 (Morsi, Lotfallah and El-Zekey [15]) A prelinear tied algebra is a tied al-
gebra Λ = (L,≤L, P,≤P , 1,⇒,&,⊃,⊗,→,∧P ,∨P ,∧L,∨L) that satisfies the following two
prelinearity equations for → and ⊃:

∀a, c ∈ P : (a→ c) ∨P (c→ a) = 1P , (51)

∀x, y ∈ L : (x ⊃ y) ∨P (y ⊃ x) = 1P . (52)

We denote the class of all prelinear tied adjointness algebras by |L-TA|.

The terminology prelinear is due to Hájek (1998) in the setting of residuated algebras.
It is justified by the fact that (51) and (52) hold trivially whenever P, L are linearly
ordered (i.e., chains), due to the comparator axiom (6). These identities are equivalent in
a tied algebra to the following inequalities [6,8,15]:

∀z ∈ P, ∀b, c ∈ L : ((b ⊃ c)→ z) ≤P (((c ⊃ b)→ z)→ z) , (53)

∀x, y, z ∈ P : ((x→ y)→ z) ≤P (((y → x)→ z)→ z) . (54)

Prelinearity enters into many proofs through the two inferences of the next proposition.
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Proposition 5 (Deduction by Cases) [16]

If {(α ⊃ β) ≤P χ and (β ⊃ α) ≤P χ} then χ = 1P , (55)

If {(ξ → τ ) ≤P χ and (τ → ξ) ≤P χ} then χ = 1P . (56)

We need the following obvious identities and inequalities in |TA|:

Theorem 6

(α ⊃ β) = (α ⊃ α ∧L β), (57)

(α ⊃ β) = (α ∨L β ⊃ β), (58)

(ξ → τ ) = (ξ → ξ ∧P τ) , (59)

(ξ → τ ) = (ξ ∨P τ → τ) , (60)

(α ⊃ β) ≤P (α ∧L γ ⊃ β ∧L γ), (61)

(α ⊃ β) ≤P (α ∨L γ ⊃ β ∨L γ). (62)

The two lattices P and L, underlying a prelinear tied algebra, have to be distributive
[16]. We next compile principal features of prelinear tied algebras.

Theorem 7 (Meet and Join) [15,16]

α ∨L β = ((β ⊃ α)⇒ α) ∧L ((α ⊃ β)⇒ β) , (63)

ξ ∨P τ = ((τ → ξ)→ ξ) ∧P ((ξ → τ )→ τ) , (64)

α ∧L β = ((β ⊃ α)&β) ∨L ((α ⊃ β)&α) , (65)

ξ ∧P τ = (τ ⊗ (τ → ξ)) ∨P (ξ ⊗ (ξ → τ )) . (66)

We use the abbreviation τn to denote τ ⊗ ...⊗ τ (n copies of τ).

Theorem 8 [6,8,16]

ζ ⊗ τ ≤P ζ2 ∨P τ
2, (67)

(ζ ∨P τ )⊗ (ζ ∨P τ ) ≤P ζ2 ∨P τ
2, (68)

(α ⊃ β)n ∨P (β ⊃ α)n = 1P , (69)

(ζ → τ)n ∨P (τ → ζ)n = 1P [8]. (70)
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Theorem 9 (Lattice Homomorphisms) [16]

(ξ ⇒ β ∧L γ) = (ξ ⇒ β) ∧L (ξ ⇒ γ), (71)

(ξ ∨P τ ⇒ γ) = (ξ ⇒ γ) ∧L (τ ⇒ γ), (72)

(ξ ⇒ β ∨L γ) = (ξ ⇒ β) ∨L (ξ ⇒ γ), (73)

(ξ ∧P τ ⇒ γ) = (ξ ⇒ γ) ∨L (τ ⇒ γ), (74)

(α ⊃ β ∧L γ) = (α ⊃ β) ∧P (α ⊃ γ), (75)

(α ∨L β ⊃ γ) = (α ⊃ γ) ∧P (β ⊃ γ), (76)

(α ⊃ β ∨L γ) = (α ⊃ β) ∨P (α ⊃ γ), (77)

(α ∧L β ⊃ γ) = (α ⊃ γ) ∨P (β ⊃ γ), (78)

ξ&(β ∨L γ) = (ξ&β) ∨L (ξ&γ), (79)

(ξ ∨P τ)&γ = (ξ&γ) ∨L (τ&γ). (80)

ξ&(β ∧L γ) = (ξ&β) ∧L (ξ&γ) , (81)

(ξ ∧P τ )&γ = (ξ&γ) ∧L (τ&γ) , (82)

(ξ → τ ∨P ζ) = (ξ → τ ) ∨P (ξ → ζ), (83)

(ξ ∧P τ → ζ) = (ξ → ζ) ∨P (τ → ζ) [6]. (84)

ζ ⊗ (τ ∧P ξ) = (ζ ⊗ τ ) ∧P (ζ ⊗ ξ) [6,9]. (85)

The definition of subdirect products of algebraic systems can be looked up in Hájek’s
book [8]. In prelinear tied algebras, two comparators are required to be prelinear. This
stipulation is needed to establish the following representation:

Theorem 10 (Representation Theorem for Tied Algebras) [15] A tied algebra is
prelinear if and only if it is a subdirect product of a system of tied chains.

3. Generalized modus ponens with multiple rules

3.1. Zadeh’s generalized modus ponens
Let U,W be universes, and let M,Mpre be P -valued possibility distributions (shortly,

P -possibility distributions) on U . We handle them simply as modal P -fuzzy subsets of
U (members of PU that attain the value 1). Likewise, Q,Qifr ∈ LW are L-possibility
distributions on W , which need not be modal. Each of the two symbols X,Z denotes
an unknown individual in the universe U or W , respectively. According to Zadeh [22], a
Generalized Modus Ponens (GMP) inference scheme takes the form:

Inference Scheme (I):

Rule: If X is M then Z is Q

Premise (observation): X is Mpre

Inference: Z is Qifr.

Let n be an integer, and denote the ordinal {1, · · · , n} by N . A generalized modus
ponens inference scheme with multiple rules takes the form:

Inference Scheme (II):
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Rules: If X is Mj then Z is Qj, j ∈ N

Premise: X is Mpre

Inference: Z is Qifr.

We refer the reader to the comprehensive survey of fundamental contributions toGMP,
up to 1990, by Dubois and Prade in [5, Section 4], with extensive citations. An inter-
pretation of this inference scheme is a concrete mathematical formula to compute Qifr in
terms ofM,Q and the observationMpre, subject to a reasonable array of intuitive criteria
[5]. These include Qifr ≥ Q, isotonicity, the limit case of null specificity (Qifr = 1W when
Mpre = 1U), and the following criterion for the intuitive soundness of interpretations, due
to Fukami et al. [7], Turksen and Tian [21] (who call it the basic requirement for fuzzy
reasoning), and Perfilieva and Lehmke [19,20] (whereby it is called correctness):

For each j ∈ N : Qifr = Qj whenever Mpre =Mj. (86)

3.2. Interpretations based on Compositional Rule of Inference
Zadeh’s Compositional Rule of Inference (CRI) [22] is the best known type of interpre-

tations of Inference Scheme I of GMP. Morsi [12] used in CRI the more general connec-
tives of adjointness algebras. Let Λ =
(P,≤P , 1P , L,≤L,⇒,&,⊃) be an adjointness algebra. According to the
combination-projection principle of Zadeh, we take:

Qifr (w) = sup
u∈U

Mpre (u)&F (u,w) , w ∈W (87)

In this section, F denotes the L-possibility distribution on U × W of the rule of the
scheme, which we equate to the L-fuzzy relation F ∈ LU×W given by

F (u, w) = (M (u)⇒ Q (w)) ∈ L, (u,w) ∈ U ×W . (88)

This is not the only possible reading of the rule of the scheme (see Section 4).
Hence, CRI yields the following computation of Qifr:

Qifr (w) = sup
u∈U

(Mpre (u)& (M (u)⇒ Q (w))) ∈ L, w ∈W . (89)

The use of a possibly noncommutative conjunction & : P × L −→ L is justified
here, because the intuitive meaning of the P -possibility values in the observation Mpre

may differ from that of the L-values of the rule F . This formulation generalizes that of
Dubois and Prade [4], who used a residuated pair ⊗,→ on [0, 1], whereas Zadeh’s original
formulation uses only & = min on [0, 1].
In the literature, we meet two, intuitively sound, adaptations of Zadeh’s Compositional

Rule of Inference (CRI) to multiple-rules inference schemata. The first approach, called
by Turksen and Tian [21] First Aggregate Then Infer (FATI), aggregates the given n rules
of Inference Scheme II, using infimum, into a single rule modeled by the L-possibility
distribution

inf
j∈N

(Mj (u)⇒ Qj (w)) ∈ L, (u, w) ∈ U ×W, (90)
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on the Cartesian product U×W . The conclusionQifr (which we also denote byCRI∗II (M
pre))

is the L-possibility distribution on W obtained, according to the combination-projection
principle, as follows: For all w ∈W :

CRI∗II (M
pre) (w) = sup

u∈U

(
Mpre (u)&inf

j∈N
(Mj (u)⇒ Qj (w))

)
∈ L. (91)

The second approach, called First Infer Then Aggregate (FITA), infers a conclusion
from each rule separately, and then aggregates those n conclusions using infimum. The
inference Qifr, which we now denote by CRIII (M

pre), becomes: For all w ∈W ,

CRIII (M
pre) (w) = inf

j∈N
sup
u∈U

(Mpre (u)& (Mj (u)⇒ Qj (w))) ∈ L. (92)

Conclusions obtained through the FATI approach are generally more specific than those
obtained through the FITA one; that is, CRI∗II (M

pre) ≤L CRIII (Mpre) (as can be easily
seen by comparing (91) with (92)). Moreover, the FATI approach is intuitively more
convincing, and it is known to preserve finite joins, while the FITA approach fails to do,
even in the classical (binary) case (Dubois and Prade [5]).

Lemma 11 Under the two approaches FATI and FITA, the CRI-interpretations of In-
ference Scheme II satisfy, for all j ∈ N :

CRI∗II (Mj) ≤L CRIII (Mj) ≤L Qj. (93)

Proof. For every w ∈W we have:
CRI∗II (Mj) (w) ≤L CRIII (Mj) (w) = inf

k∈N
sup
u∈U

(Mj (u)& (Mk (u)⇒ Qk (w)))

≤L sup
u∈U

(Mj (u)& (Mj (u)⇒ Qj (w))) ≤L Qj (w) by (11).

This proves (93).

Criterion (86) is satisfied byCRI (of the type specified above) in all single rule inference
schemata (Morsi [12]), but it may fail for multiple rules within both the FATI and FITA
approaches. Our purpose, however, is to establish the equivalence of Inference Scheme II to
the following inference scheme (that is, the two schemata produce the same conclusions),
which satisfies this criterion: For each j ∈ N , let Qj be the conclusion of Inference Scheme
II when Mpre =Mj. We compose:

Inference Scheme (III):

Rules: If X is Mj then Z is Qj, j ∈ N

Premise: X is Mpre

Inference: Z is Q
ifr
.

After we prove the equivalence of Inference Schemata II and III, the latter one will
satisfy the basic requirement for fuzzy reasoning automatically, because whenMpre =Mj,

we have Q
ifr
= Qifr = Qj, by the definition of Qj. Morsi and Fahmy [14] have already

established this equivalence within the special setting of residuated chains on real numbers.
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We here extend it to the settings of the more general logical connectives (on lattices P and
L); of an adjointness algebra, under the FATI approach (Theorem 12), and of a prelinear
tied algebra, under the FITA approach (Theorem 14).

Theorem 12 In Inference Scheme III, take Qj = CRI∗II (Mj) for all j ∈ N . Then
under the FATI approach to CRI, and using the connectives of an adjointness algebra
Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃), the two schemata II and III are equivalent. Moreover,
Inference Scheme III satisfies the basic requirement for fuzzy reasoning.

Proof. In the described case, we denote the conclusions of Inference Scheme III by
CRI∗III (M

pre). For every j ∈ N we have: Qj = CRI∗II (Mj) ≤L Qj , by Lemma 11. From
this, we deduce directly

CRI∗III (M
pre) ≤L CRI

∗
II (M

pre) , (94)

for all premises Mpre. The opposite inequality is derived as follows: Choose and fix
w ∈W . Then

CRI∗III (M
pre) (w) = sup

u∈U

(
Mpre (u)&inf

j∈N

(
Mj (u)⇒ Qj (w)

))

= sup
u∈U

(
Mpre (u)&inf

j∈N

(
Mj (u)⇒ sup

t∈U

(
Mj (t)& inf

k∈N
(Mk (t)⇒ Qk (w))

)))

≥L sup
u∈U

(
Mpre (u)&inf

j∈N

(
Mj (u)⇒

(
Mj (u)& inf

k∈N
(Mk (u)⇒ Qk (w))

)))

≥L sup
u∈U

(
Mpre (u)& inf

k∈N
(Mk (u)⇒ Qk (w))

)
(by (12))

= CRI∗II (M
pre) (w) .

This yields the inequality opposite to (94). Hence, equality holds, and the two schemata
are equivalent. Consequently, Inference Scheme III satisfies the basic requirement for fuzzy
reasoning, as we explained earlier.

In contrast with the preceding proof, our proof in the FITA approach needs identity
(96) below. This identity fails in a general adjointness algebra, but we now establish its
validity in prelinear tied algebras:

Lemma 13 In a tied algebra Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃,⊗,→) , if the comparator ⊃
is prelinear (that is, it satisfies (52)), then

∀z1, · · · , zn ∈ L : sup
j∈N

(
zj ⊃ inf

k∈N
zk

)
= 1. (95)

Also, for all B,C ∈ PU and for all z1, · · · , zn ∈ L :

sup
u∈U

(
B (u)&

(
C (u)⇒ inf

k∈N
zk

))
= inf

k∈N
sup
u∈U

(B (u)& (C (u)⇒ zk)) . (96)

Proof. We have by (78) then (6):

sup
j∈N

(
zj ⊃ inf

k∈N
zk

)
=

(
inf
j∈N

zj ⊃ inf
k∈N

zk

)
= 1.

Medzinárodná konferencia 70 rokov SvF STU, 4. - 5. december 2008, Bratislava, Slovensko 

International Conference 70 Years of FCE STU, December 4 - 5, 2008 Bratislava, Slovakia 



12

This proves (95). We also have(
inf
j∈N

sup
u∈U

(B (u)& (C (u)⇒ zj))

)
⊃

(
sup
t∈U

(
B (t)&

(
C (t)⇒ inf

k∈N
zk

)))

= sup
j∈N

inf
u∈U

(
(B (u)& (C (u)⇒ zj)) ⊃

(
sup
t∈U

(
B (t)&

(
C (t)⇒ inf

k∈N
zk

))))

(by (78), (3))

≥P sup
j∈N

inf
u∈U

(
(B (u)& (C (u)⇒ zj)) ⊃

(
B (u)&

(
C (u)⇒ inf

k∈N
zk

)))

≥P sup
j∈N

inf
u∈U

(
(C (u)⇒ zj) ⊃

(
C (u)⇒ inf

k∈N
zk

))
(by (31))

≥P sup
j∈N

(
zj ⊃ inf

k∈N
zk

)
(by (30))

= 1, by (95).
This yields, through the comparator property (6):

inf
j∈N

sup
u∈U

(B (u)& (C (u)⇒ zj)) ≤L sup
t∈U

(
B (t)&

(
C (t)⇒ inf

k∈N
zk

))
.

The opposite inequality follows directly from the fact that⇒,& are isotone in the right
argument. Thus, identity (96) holds.

Theorem 14 In Inference Scheme III, take Qj = CRIII (Mj) for all j ∈ N . Then under
the FITA approach to CRI, and using the connectives of a tied algebra Λ in which the
comparator ⊃ is prelinear, the two inference schemata II and III are equivalent. Moreover,
Inference Scheme III satisfies the basic requirement for fuzzy reasoning.

Proof. In the described case, we denote the conclusion of Inference Scheme III by
CRIIII (M

pre). From (93) we conclude that Qj ≤L Qj for all j ∈ N . Hence, we have for
all premises Mpre: CRIIII (M

pre) ≤L CRIII (Mpre).
We prove the opposite inequality. Choose and fix w ∈W :
CRIIII (M

pre) (w) = inf
j∈N

sup
u∈U

(
Mpre (u)&

(
Mj (u)⇒ Qj (w)

))

= inf
j∈N

sup
u∈U

(
Mpre (u)&

(
Mj (u)⇒ inf

k∈N
sup
t∈U

(Mj (t)& (Mk (t)⇒ Qk (w)))

))

= inf
j∈N

inf
k∈N

sup
u∈U

(
Mpre (u)&

(
Mj (u)⇒ sup

t∈U

(Mj (t)& (Mk (t)⇒ Qk (w)))

))

(by (96))
≥L inf

j∈N
inf
k∈N

sup
u∈U

(Mpre (u)& (Mj (u)⇒Mj (u)& (Mk (u)⇒ Qk (w))))

≥L inf
k∈N

sup
u∈U

(Mpre (u)& (Mk (u)⇒ Qk (w))) (by (12))

= CRIII (M
pre) (w) .

This completes the proof of the equivalence of schemata II and III, from which we
conclude that Scheme III satisfies the basic requirement for fuzzy reasoning.

In the case of CRI on a (prelinear) tied algebras, Theorems 12 and 14 indicate that
Criterion (86) is unnecessarily restrictive (cf. Morsi and Fahmy [14]): The authors believe
that the violation of this criterion, by an inference system using CRI, merely signifies that
the scheme’s If-Then rules are not given, individually, in their fullest informative power.
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But, those shortcomings of individual rules are compensated for by the other rules. In
this sense, Inference Scheme III will be a better rendering of the given If-Then rules than
Inference Scheme II.

3.3. Interpretations based on Consequent Dilation Rule
In the following, ⊆P stands for the P -fuzzy relation on PU given by

B1 ⊆P B2 = inf
u∈U
(B1(u)→ B2(u)) ∈ P, (97)

where B1, B2 are two P -fuzzy subsets of U . It is the measure of subsethood of B1 in B2
(cf [2]). Likewise, ⊆L stands for the P -fuzzy relation on LW given by

C1 ⊆L C2 = inf
w∈W

(C1(w) ⊃ C2(w)) ∈ P,

where C1, C2 are two L-fuzzy subsets of W , and it is the measure of subsethood of C1 in
C2.
The two P -fuzzy relations⊆P and⊆L inherit many of the properties of the R-implication

→ and the comparator ⊃, respectively. In particular, C1 ⊆L C2 will be 1P if and only if
C1 ≤L C2 (by the comparator property (6)). Likewise, B1 ⊆P B2 will be 1P if and only if
B1 ≤P B2. Also, these two fuzzy relations are antitone in the first argument, isotone in
the second argument, and both are ⊗-transitive, as the following lemma asserts:

Lemma 15 The following inequalities hold in a tied algebra Λ: For all A,B,C ∈ PU and
for all D,E,Q ∈ LW :

(D ⊆ LE) ≤P [(Q ⊆L D)→ (Q ⊆L E)], (98)

(Q ⊆ LD) ≤P [(D ⊆L E)→ (Q ⊆L E)], (99)

(Q ⊆ LD)⊗ (D ⊆L E) ≤P (Q ⊆L E), (100)

(B ⊆ PC) ≤P [(A ⊆P B)→ (A ⊆P C)], (101)

(A ⊆ PB) ≤P [(B ⊆P C)→ (A ⊆P C)], (102)

(A ⊆ PB)⊗ (B ⊆P C) ≤P (A ⊆P C). (103)

Proof. We have by (32),
(D ⊆L E) ≤P inf

w∈W
[(Q(w) ⊃ D(w)) → (Q(w) ⊃ E(w))]

≤P [ inf
w∈W

(Q(w) ⊃ D(w))→ inf
w∈W

(Q(w) ⊃ E(w))] (by (16)).

This proves (98). Inequalities (99) and (100) result by applying Residuation to (98).
Inequalities (101), (102) and (103) have a similar proof.

An alternative interpretation of Inference Scheme II of GMP has been suggested by
Magrez and Smets [10], and studied in [14] under the name “Consequent Dilation Rule
(CDR)”. In this section, we use in CDR the more general connectives of tied algebras.
Let Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃,⊗,→) be a tied algebra. Then according to CDR,

the conclusion Qifr (which we also denote by CDRII (M
pre)) is the L-possibility distrib-

ution on W obtained as follows: For all w ∈W :

CDRII (M
pre) (w) = inf

j∈N
( inf
u∈U
(Mpre (u)→Mj (u))⇒ Qj(w)) ∈ L, (104)
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or, briefly,

CDRII (M
pre) (w) = inf

j∈N
((Mpre ⊆P Mj)⇒ Qj(w)). (105)

This formulation generalizes that of Morsi and Fahmy [14], who considered only residuated
algebras on [0, 1].
CDR satisfies a number of intuitive demands on fuzzy reasoning. These include that

the inference of rule number j is greater or equal to Qj (hence, the name of the method),
and it will be Qj if M

pre ≤L Mj. Also, the conclusion CDRII (M
pre) is monotone in

Mpre, Q1, · · · , Qn, and antimonotone in M1, · · · ,Mn. In the binary case, CDR agrees
with reasoning within the FITA approach, because when all fuzzy sets under consideration
are crisp, CDRII (M

pre) becomes W (nothing to infer) if Mpre �Mj.
CDR is computationally faster than CRI. This is because, for every observationMpre,

the n values of subsethood Mpre ⊆P Mj are computed once, then they are used at all
elements w of W . The saving of computer time in CDR, over CRI, is at the expense
of the specificity of inference results (cf. [14]). That is, CRI (92) produces more specific
inference results than CDR (104) does.

Theorem 16 For all Mpre ∈ PU , CDRII (M
pre) ≥L CRIII(Mpre).

Proof. We have for all Mpre ∈ PU and for all w ∈W ,
CRIII (M

pre) (w) = inf
k∈N

sup
u∈U

(Mpre (u)& (Mj (u)⇒ Qj (w)))

≤L inf
k∈N

sup
u∈U

((Mpre (u) → Mj (u)) ⇒ Qj(w)) (by (42))

≤L inf
j∈N
( inf
u∈U
(Mpre (u) → Mj (u)) ⇒ Qj(w)) (⇒ is antitone in the left argument)

= inf
j∈N
((Mpre ⊆P Mj) ⇒ Qj(w))

= CDRII (M
pre) (w).

We have the following limitations on the dilation of conclusions under CDR, and under
CRI in both the FITA (92) and FATI (91) approaches:

Theorem 17 For all j ∈ N and all M =Mpre ∈ PU :

(CRI∗II (M) ⊆L Qj) ≥ (CRIII (M) ⊆L Qj) ≥ (CDRII (M) ⊆L Qj) ≥ (M ⊆P Mj). (106)

Consequently,

CDRII (Mj) ≤L Qj. (107)

Proof. By (10), we have for all j ∈ N and all w ∈W :
(Mpre ⊆P Mj) ≤P (((Mpre ⊆P Mj) ⇒ Qj(w)) ⊃ Qj(w))

≤P ( inf
k∈N
((Mpre ⊆P Mk) ⇒ Qk(w)) ⊃ Qj(w)) (by (35))

= (CDRII (M
pre) (w) ⊃ Qj(w))

≤P (CDRII (M
pre) ⊆L Qj).

Since CRI∗II (M
pre) ≤L CRIII (M

pre) ≤L CDRII (M
pre) (Theorem 16), we obtain the

other two inequalities in (106) by (99). Inequality (107) is an obvious consequence of
(106).
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The obvious reading is that the degree of subsethood of Mpre in Mj is the lower
bound of the degree of subsethood of the conclusion CDRII (M

pre) in Qj. In particular,
CDRII (M

pre) ≤L Qj ifM
pre ≤P Mj, and in the case of a single rule, CDRII (M

pre) = Q1

if Mpre ≤P M1, i.e. CDR satisfies Criterion (86) in single-rule inference schemata. But
it may fail for multiple rules, even in the binary case. Our purpose, however, is to es-
tablish the equivalence of Inference Scheme II to Inference Scheme III, in which the basic
requirement for fuzzy reasoning is satisfied by CDR6.

Theorem 18 In Inference Scheme III, take Qj = CDRII (Mj) for all j ∈ N . Then using
the connectives of a tied algebra Λ, the two inference schemata II and III are equivalent as
far as CDR is concerned. Moreover, Inference Scheme III satisfies the basic requirement
for fuzzy reasoning.

Proof. In the described case, we denote the conclusion of Inference Scheme III by
CDRIII (M

pre). From (107) we conclude that Qj ≤L Qj for all j ∈ N . Hence, we
have for all premises Mpre: CDRIII (M

pre) ≤L CDRII (Mpre).
We prove the opposite inequality. For all premises Mpre and w ∈W :
CDRIII (M

pre) (w) = inf
j∈N
((Mpre ⊆P Mj) ⇒ Qj (w))

= inf
j∈N
((Mpre ⊆P Mj) ⇒ inf

i∈N
((Mj ⊆P Mi) ⇒ Qi (w)))

= inf
j∈N

inf
i∈N
((Mpre ⊆P Mj) ⇒ ((Mj ⊆P Mi) ⇒ Qi (w))) (by (3))

= inf
j∈N

inf
i∈N
((Mpre ⊆P Mj) ⊗ (Mj ⊆P Mi) ⇒ Qi (w)) (by (21))

≥L inf
i∈N
((Mpre ⊆P Mi) ⇒ Qi (w)) (by (103))

= CDRII (M
pre).

This completes the proof of the equivalence of schemata II and III, from which we
conclude that Scheme III satisfies the basic requirement for fuzzy reasoning, by virtue of
the reason expounded in the paragraph preceding Theorem 12.

A method of legitimately improving the specificity of inference results under CDR is
described in the next theorem.

Theorem 19 In Inference Scheme III, take Qj = CRI∗II (Mj) for all j ∈ N , and de-
note the conclusion under CDR of Inference Scheme III by CDR∗III (M

pre), using the
connectives of a tied algebra Λ. Then Inference Scheme III satisfies the basic require-
ment for fuzzy reasoning under CDR, and it is related to Scheme II as follows: for every
observation Mpre ∈ PU :

CRI∗II (M
pre) ≤L CDR

∗
III (M

pre) ≤L CDRII (M
pre) . (108)

Proof. We have CRI∗II (M
pre) = CRI∗III (M

pre) (by Theorem 12)
≤L CDR∗III (M

pre) (by Theorem 16) ≤L CDRII (M
pre) ,

because every Qj is less or equal to Qj (Lemma 11). This proves (108).
In particular, we have for every j ∈ N :

6In [14] this equivalence has already been established within the special setting of residuated chains on
real numbers. Here we generalize this result to tied algebras on two lattices P and L.
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Qj = CRI∗II (Mj) ≤L CDR∗III (Mj) ≤L Qj , by (107).

The equalitiesCDR∗III (Mj) = Qj now ensue for all j, establishibg the basic requirement
for fuzzy reasoning for the interpretation CDR∗III .

The inequalities in (108) ensure that the increase of specificity of inferences by using
CDR in Inference Scheme III, over those obtained by applying CDR to Inference Scheme
II, is quite legitimate. Evidently, applications of CDR to Inference Schemata III and II
require roughly the same operating time. So, the computational advantage of CDR is
maintained in CDR∗III . However, a small time will have to be spent once in preparing
Inference Scheme III.

Example 20 We denote the opposite lattice of a lattice P by P op. By an S-type implica-
tion we mean an implication ⇒: P × P −→ P that is derived from an object-conjunction
⊗ on P , together with a self-inverse lattice isomorphism ¬ : P op −→ P, in the following
manner:

x⇒ c = ¬ (x⊗ (¬c)) , x, c ∈ P. (109)

The function ¬ is understood to interpret negation on P. Accordingly, S-type implica-
tions provide a general framework for a multiple-valued logic in which an entailment “If
ξ then γ” is construed as “Not (ξ and (not γ))”.
Let ⇒ be an S-type implication, and let 0, 1 be the bounds of P . Then

0 = ¬1, (110)

1 = ¬0, (111)

∀x ∈ P : ¬x = x⇒ 0 = x ⊃ 0. (112)

Also, the object-conjunction ⊗ is the unique binary operation on P that ties ⇒. It follows
that⇒ satisfies all the universal properties of tied algebras, stated in Section 2.3, including
the inequalities in Theorem 3. In the tied algebra ΛS = (P,≤P , 1, 0,⇒,&,⊃,⊗,→), → is
the residuum of ⊗, and the remaining two connectives & and ⊃ are given by:

x&b = ¬ (x→ (¬b)) , (113)

b ⊃ c = (¬c)→ (¬b) . (114)

The conclusions of Inference Scheme II, drawn from an observation by means of the
methods of Sections 3.2 and 3.3, under the connectives of the algebra ΛS, are computed
as follows: For all w ∈W :

CRI∗II (M
pre) (w) = sup

u∈U

(
Mpre (u)&inf

j∈N
(Mj (u)⇒ Qj (w))

)

= sup
u∈U

(
¬

(
Mpre (u)→

(
¬ inf
j∈N
¬ (Mj (u)⊗ (¬Qj (w)))

)))

= sup
u∈U

(
¬

(
Mpre (u)→

(
sup
j∈N

(Mj (u)⊗ (¬Qj (w)))

)))

= ¬

(
inf
u∈U

(
Mpre (u)→

(
sup
j∈N

(Mj ⊗ (¬Qj (w)))

)
(u)

))

= ¬

(
Mpre ⊆P

(
sup
j∈N

(Mj ⊗ (¬Qj (w)))

))
,
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and
CRIII (M

pre) (w) = inf
j∈N
sup
u∈U

(Mpre (u)& (Mj (u)⇒ Qj (w)))

= inf
j∈N

(¬ (Mpre ⊆P (Mj ⊗ (¬Qj (w)))))

= ¬

(
sup
j∈N

(Mpre ⊆P (Mj ⊗ (¬Qj (w))))

)
,

CDRII (M
pre) (w) = inf

j∈N
((Mpre ⊆P Mj) ⇒ Qj(w))

= inf
j∈N
(¬ ((Mpre ⊆P Mj)⊗ (¬Qj(w))))

= ¬(sup
j∈N

((Mpre ⊆P Mj)⊗ (¬Qj(w)))).

4. Fuzzy Controllers

In this section, we work again with Inference Schemata I and II of GMP (of Section 3.1)
with an interpretation based on a particular case of the compositional rule of inference,
called Generalized Conjunctive Rule (GCR for short), due to Hájek [8]. GCR is not
a frequently used type of interpretations of Inference Scheme I of GMP, but we get it
naturally from the compositional rule and we shall use our analysis of this particular case
to investigate the principles of fuzzy control (the most broadly used application of fuzzy
logic) in general.
Here, we shall consider the GCR as particular case of the compositional rule of infer-

ence, within the settings of the more general logical connectives (on lattices P and L) of
a tied algebra. To this end, we take in (87) F (u, w) to be M(u)&Q(w) for some M ∈ PU

and Q ∈ LW . Thus we get the following variant of (89) which define the inference result
Qifr of Inference Scheme I :

Qifr (w) = sup
u∈U

(Mpre (u)& (M (u)&Q (w))) ∈ L, w ∈W . (115)

This formulation generalizes that in [8], where a residuated pair ⊗,→ on lattice L is used
, whereas Mamdani’s original formulation uses only & = min on [0, 1], see [11].

Theorem 21 Under GCR interpretation of Inference Scheme I , and using the connec-
tives of a tied algebra Λ, we have:

sup
u∈U

M2(u)⊗ (M ⊆P Mpre) ≤P (Q ⊆L Q
ifr). (116)

Moreover, Inference Scheme I satisfies the basic requirement for fuzzy reasoning for all
modal P -fuzzy sets M .

Proof. We have for all w ∈W ,
(M ⊆P Mpre)
≤P (sup

u∈U

(M(u)&(M(u)&Q(w))) ⊃ sup
u∈U

(Mpre(u)&(M(u)&Q(w)))) (by (31))

= (sup
u∈U

(M2(u)&Q(w)) ⊃ sup
u∈U

(Mpre(u)&(M(u)&Q(w)))) (by (22))

= (sup
u∈U

(M2(u)&Q(w)) ⊃ Qifr(w)) (by (115))
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= ((sup
u∈U

M2(u)&Q(w)) ⊃ Qifr(w)) (by (7))

= (sup
u∈U

M2(u)→ (Q(w) ⊃ Qifr(w))) (by strong adjointness, (23))

Thus, by Residuation, we get (116).
On the other hand, we have for all w ∈W ,
Qifr(w) = sup

u∈U

(Mpre(u)&(M(u)&Q(w)))

= sup
u∈U

((Mpre(u)⊗M(u))&Q(w)) (by tiedness, (22))

= (sup
u∈U

(Mpre(u)⊗M(u))&Q(w)) (by (7))

≤L Q(w)
This proves that Qifr ≤L Q, from which and by (116) we conclude that Scheme I

satisfies the basic requirement for fuzzy reasoning or all modal P -fuzzy sets M .

Let us now turn to the multiple-rule Inference Scheme (II) (of Section 3.1) with an
interpretation based on GCR. Accordingly, the GCR-inference result Qifr of Scheme (II)
(which we also denote by GCRII(M

pre)) becomes: For all w ∈W :

GCRII(M
pre)(w) = sup

j∈N

sup
u∈U

(Mpre(u)&(Mj(u)&Qj(w))) ∈ L. (117)

The form of GCR given in (117), above, belongs to FITA approach. A version GCR∗

of GCR, that belongs to FATI approach can be constructed; according to which the
inference result Qifr of Scheme (II) (which we also denote by GCR∗II(M

pre)) will be given
by: For all w ∈W :

GCR∗II(M
pre)(w) = sup

u∈U

(
Mpre(u)&sup

j∈N

(Mj(u)&Qj(w))

)
∈ L. (118)

In fuzzy control (based on GCR interpretations), there is a logical mismatch caused
by the fact that “fuzzy IF-THEN rules” are presented as implications but then used
to construct a fuzzy relation having little to do with any implication, at least at first
glance (the relation is defined by a disjunction of conjunctions). Attempts to call e.g. the
min conjunction a “Mamdani implication” (see e.g. [3]) must be strictly rejected since
minimum as implication does not obey the principle saying that the truth function of a
connective must behave classically for extremal values 0, 1. It has slowly become clear
that fuzzy control deals with approximation of functions on the basis of pieces of fuzzy
information of the kind “for arguments approximately equal ci the image is approximately
equal to di” (see [8]).
Hájek, in [8], based his elaboration of systems of “fuzzy IF-THEN rules” on the notion

of a fuzzy function F (using the notion of a similarity) and n examples F (ci, di) (ci
arguments, di images). Mi(u) said “u is similar to ci ”, Qi(w) said “w is similar to di
”. He showed that sup

j∈N

(Mj(u)&Qj(w)) ≤ F ≤ inf
j∈N
(Mj(u) ⇒ Qj(w)) (with ⊗ = & and

⇒=→ on L = P ). Also, he showed that sup
i∈N

M2

i (u) (saying that u very much satisfies

some Mi) implies sup
j∈N

(Mj(u)&Qj(w)) = inf
j∈N
(Mj(u)⇒ Qj(w)).

In this section we investigate the (logical) principles of fuzzy control in general, without
relating it to the notion of similarity.
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The most common way to determine the inference result Qifr of Inference Scheme (II),
in fuzzy logic controllers, is referred to as a method of interpolation (IntP, for short),
suggested by Zadeh [22]. In our general setting, IntP supplies the following definition for
Qifr (which we also denote by IntPII(M

pre)): For all w ∈W :

IntPII(M
pre) = sup

j∈N

((Mpre
⋓Mj)&Qj(w)) ∈ L. (119)

in which

Mpre
⋓Mj = sup

u∈U

(Mpre(u)⊗Mj(u)) ∈ P.

Mpre
⋓Mj calculates the degree of consistency between the given fact and the antecedent

of each IF-THEN rule j in terms of the height of intersection of the P -fuzzy setsMpre,Mj

∈ PU .
The following theorem asserts that the three interpretations of Inference Scheme (II)

defined by (117), (118) and (119) are equivalent (i.e. compute the same inference result.)

Theorem 22 Using the connectives of a tied algebra Λ, we have:
IntPII(M

pre) = GCRII(M
pre) = GCR∗II(M

pre).

Proof. IntPII(M
pre)(w) = sup

j∈N

(sup
u∈U

(Mpre(u)⊗Mj(u))&Qj(w))

= sup
j∈N

sup
u∈U

((Mpre(u)⊗Mj(u))&Qj(w)) (by (7))

= sup
j∈N

sup
u∈U

(Mpre(u)&(Mj(u)&Qj(w)) = GCRII(M
pre)(w) (by (22))

= sup
u∈U

sup
j∈N

(Mpre(u)&(Mj(u)&Qj(w))

= sup
u∈U

(Mpre(u)&sup
j∈N

(Mj(u)&Qj(w)) = GCR∗II(M
pre)(w)(by (79)).

We denote by MAMD (resembling the name Mamdani, see [11]) any one of the three
interpretations GCR, GCR∗ or IntP, since all these interpretations are equivalent (by
Theorem 22). Accordingly, we denote byMAMDII(M

pre) the conclusionQifr of Inference
Scheme (II), when computed by GCR (117), GCR∗ (118) or IntP (119).
Although the three methods GCR, GCR∗ and IntP are equivalent, IntP indicates a

faster arrangement of computation, whereby, for every observation Mpre, the n values of
consistency Mpre

⋓Mj are computed once, then they are used at all w ∈W .

Example 23 The conclusions of Inference Scheme II, drawn from an observation by
means ofMAMD (119) (equivalently (117) or (118)), under the connectives of the algebra
ΛS = (P,≤P , 1, 0,⇒,&,⊃,⊗,→) (see Example 20), are computed as follows: For all
w ∈W :
MAMDII(M

pre)(w) = sup
j∈N

((Mpre
⋓Mj)&Qj(w))

= sup
j∈N

¬((Mpre
⋓Mj)→ ¬Qj(w))

= ¬ inf
j∈N
((Mpre

⋓Mj)→ ¬Qj(w)).
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GCR (117) (equivalently (118) or (119)) defines a functional associating to each P -
fuzzy subset Mpre of U the corresponding L-fuzzy subset Qifr of W (interpreting the
inference result). (Note that in fuzzy control this is used to define a crisp mapping of
U into W : one first uses a fuzzification operation, associating to each u ∈ U a fuzzy set
Mpre (“approximately u”), then applies the functional to get Qifr and finally applies a
defuzzification procedure converting the fuzzy set Qifr into a crisp output w ∈ W . We
shall not discuss the operations of fuzzification and defuzzification.)
Let DNF and CNF denote the L-possibility distributions on U ×W of the rule of the

scheme, which we equate to the L-fuzzy relations DNF,CNF ∈ LU×W given by

DNF (u, w) = sup
j∈N

(Mj(u)&Qj(w)) ∈ L, (u,w) ∈ U ×W, (120)

CNF (u, w) = inf
j∈N
(Mj(u)⇒ Qj(w)) ∈ L, (u,w) ∈ U ×W, (121)

In [8] various results on the relation between (120) and (121) has been characterized
within the BL-algebras (using the notion of a similarity). Here, we just restrict ourselves
to following result relating (120) and (121) in our new settings of the more general logical
connectives (on lattices P and L) of a tied algebra.

Theorem 24 Using the connectives of a tied algebra (on lattices P and L), we have for
all u ∈ U and w ∈W :
sup
i∈N

M2

i (u) ≤P (CNF (u,w) ⊃ DNF (u, w)).

Proof. Choose and fix w ∈W and u ∈ U . For every i ∈ N we have:
CNF (u,w)

= inf
j∈N
(Mj(u)⇒ Qj(w)) (by (121))

≤L (Mi(u)⇒ (Mi(u)⇒ sup
j∈N

(Mj(u)&Qj(w))) (by (12) and the monotonicity of⇒)

= (Mi(u)⇒ (Mi(u)⇒ DNF (u,w)) (by (120))
= (M2

i (u)⇒ DNF (u,w)) (by Tiedness (21)).
Thus, by Adjointness 1, we get the result.

Theorem 24 says that for each u ∈ U and w ∈ W the degree in which u satisfies
sup
i∈N

M2

i (u) (i.e., by which u very much satisfies some Mi) is a lower bound for the degree

in which (u, w) satisfies CNF (u,w) ⊃ DNF (u, w).
In the following, for some Q1, Q2 ∈ LW , the notation Q1 ≡ Q2 is used to abbreviate

the writing of a relation (Q1 ⊆L Q2) ⊗ (Q2 ⊆L Q1). Also, Let DNF ⊆L CNF stand
for inf

u∈U
inf
w∈W

(DNF (u,w) ⊃ CNF (u, w)). Recall that CRI∗II (M
pre) is the inference re-

sult of Scheme (II) computed by (91). The following theorem relates CRI∗II (M
pre) and

MAMDII(M
pre) as follows:

Theorem 25 Using the connectives of a tied algebra (on lattices P and L), we have the
following:
(i) inf

u∈U
(sup
i∈N

M2

i (u)) ≤P (CRI
∗
II (M

pre) ⊆L MAMDII(M
pre)),
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(ii) (DNF ⊆L CNF ) ≤P (MAMDII(M
pre) ⊆L CRI∗II (M

pre)),
(iii) (DNF ⊆L CNF )⊗ inf

u∈U
(sup
i∈N

M2

i (u)) ≤P (MAMDII(M
pre) ≡ CRI∗II (M

pre)).

Proof. i- By Theorem 24 and monotonicity of & we get for all w ∈W :
inf
u∈U
(sup
i∈N

M2

i (u))

≤P (sup
u∈U

(Mpre(u)&CNF (u,w)) ⊃ sup
u∈U

(Mpre(u)&DNF (u, w)))

= (CRI∗II (M
pre) (w) ⊃MAMDII(M

pre)(w)) (by (91) and (118))
≤P inf

w∈W
(CRI∗II (M

pre) (w) ⊃MAMDII(M
pre)(w)).

ii- Direct by the monotonicity of &.
iii- By combining (i) and (ii) by (27), we get the result.

Part (iii) of the last theorem says that, if DNF is sufficiently included in CNF and,
for each u ∈ U , u (sufficiently) very much satisfies some Mi then MAMDII(M

pre) is
sufficiently close to CRI∗II (M

pre). In particular, if DNF ≤L CNF and for each u ∈ U

there is some i such that Mi(u) = 1 then, for all observations M
pre, MAMDII(M

pre) =
CRI∗II (M

pre).
If Mi, Qi are interpreted by crisp (0, 1 -valued) subsets of the respective domains then

DNF ≤L CNF is equivalent to Mi ∩Mj = ∅ for all i �= j (i.e. they are disjoint). Also,
the condition inf

u∈U
(sup
i∈N

M2

i (u)) above means that the whole domain are covered by all Mi,

i = 1, ..., n.
In the following we investigate the status of Criterion (86) (cf. Section 3.1) in the case of

MAMD interpretation of Inference Scheme (II). Criterion (86) is satisfied by MAMD
in all single rule inference schemes (see Theorem 21). But, this is not generally true in
multiple-rule inference schemes.
We do not have analogues of Theorems 12, 14 and 18 for the methodMAMD. However,

we now show that Criterion (86) is satisfied by MAMD in a special type of inference
schemata.

Theorem 26 UnderMAMD interpretation of Inference Scheme II , and using the con-
nectives of a tied algebra Λ = (P,≤P , 1P , L,≤L,⇒,&,⊃,⊗,→), we have for each i ∈ N :
i) sup

u∈U

(Mpre(u)⊗Mi(u)) ≤P (Qi ⊆L MAMDII(M
pre))

ii) (DNF ⊆L CNF )⊗ (Mpre ⊆L Mi) ≤P (MAMDII(M
pre) ⊆L Qi)

iii) (DNF ⊆L CNF )⊗ sup
u∈U

(M2

i (u)) ≤P (MAMDII(M
pre) ≡ Qi)

Proof. For each w ∈W , we have
sup
u∈U

(Mpre(u)⊗Mi(u))&Qi(w)

≤L sup
i∈N

(
sup
u∈U

(Mpre(u)⊗Mi(u))&Qi(w)

)

=MAMDII(M
pre))(w).

Thus, by Adjointness 1, 2, we get
sup
u∈U

(Mpre(u)⊗Mi(u)) ≤P (Qi(w) ⊃MAMDII(M
pre))(w))

≤P inf
w∈W

(Qi(w) ⊃MAMDII(M
pre))(w)).
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This proves (i).
ii) (DNF ⊆L CNF )⊗ (Mpre ⊆L Mi)
≤P inf

w∈W
inf
u∈U
(DNF (u, w) ⊃ CNF (u,w))⊗ (Mpre(u)→Mi(u))

≤P inf
w∈W

inf
u∈U

((Mpre(u)&DNF (u, w)) ⊃ (Mi(u)&CNF (u, w))) (by (27))

≤P inf
w∈W

(
sup
u∈U

(Mpre(u)&DNF (u, w)) ⊃ sup
u∈U

(Mi(u)&CNF (u, w))

)
(by (17))

≤P inf
w∈W

(MAMDII(M
pre)(w) ⊃ Qi(w)) .

The last inequality follows by (118) and from Theorem 17 (2) by taking Mpre = Mi.
This proves (ii)
iii) Direct by combining (i) and (ii) by (27) and taking Mpre =Mi.

This theorem shows that the height of intersection of the P -fuzzy subsetsMpre,Mi of U
is the lower bound of the degree of subsethood of Qi inMAMDII(M

pre). In particular, if
Mpre(u)⊗Mi(u) = 1 for some u ∈ U then Qi is included in MAMDII(M

pre). Moreover,
if DNF is sufficiently included in CNF and Mi is (sufficiently) non-empty then Qi is
sufficiently close to MAMDII(M

pre) whenever Mpre = Mi. That is Criterion (86) is
satisfied by MAMD in this special type of inference scheme.

5. Conclusion

We demonstrated the usefulness of tied implications through some applications. We
used the connectives of a tied adjointness algebra to interpret Generalized Modus Po-
nens (GMP) inference schemata, in the vein of both the Compositional Rule of Inference
(CRI) and the Consequent Dilation Rule (CDR). We showed that a multiple-rule, gener-
alized modus ponens inference scheme is equivalent, as far asCRI orCDR are concerned,
to a system that satisfies the "basic requirement for fuzzy reasoning". We end by investi-
gating the principles of fuzzy control in general with interpretations based on a particular
case of theCRI, called Generalized Conjunctive Rule (GCR). We showed that the "basic
requirement for fuzzy reasoning" is satisfied by GCR and using the connectives of a tied
algebra in all single rule inference schemes. But, in multiple-rule inference schemes, it is
satisfied in a special type of inference scheme. We indicated clearly where prelinearity is
needed in some (but not all) of our proofs.
Two more applications of tied implications to fuzzy logic are given by the authors in

[15].
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